

Healthy diet transitions, alternative proteins and GHG policy

Mario Herrero and Daniel Mason-D'Croz

The key issues

Malnutrition

\$526

More than 200 million children under five still face a life adversely affected by early years of undernutrition.³

Climate change

A low-income country with an annual average temperature today of 25°C could see a fall in national economic growth (Gross Domestic Product or GDP) of 1.2% for each 1°C increase in temperature.⁸

+ power asymmetries and policy distortions!

NCDs and their

costs

The burden of dietrelated disease is highest in LMICs; for diabetes alone, by 2030 (assuming present trends) the annual economic impact for East Asia and the Pacific region is expected to reach almost US\$800 billion, and US\$52 billion in sub-Saharan Africa.⁴

Environmental degradation

Food systems emit 1/3 of global anthropogenic GHG

Source: Crippa et al. 2021

Breaking it down

global GHG from food production

source: Poore & Nemecek 2018

what we eat

impacts the environment & our health

... but large differences in the carbon footprint of the same foods

source: Poore & Nemecek 2018

Source: Mbow et al. IPCC SRCCL 2019, Herrero et al 2016

technical mitigation potential of **changing diets**

Demand-side GHG mitigtion potential (GtCO₂-eq yr⁻¹)

EAT-Lancet Commission
 on Healthy Diets From
 A T Sustainable Food Systems

Food Planet Health

current intakes vs planetary health diet

EAT-Lancet scenarios

			6		***			
			GHG emissions	Cropland use	Water use	Nitrogen application	Phosphorus application	Biodiversity loss
Food production boundary			5.0 (4.7-5.4)	13 (11.0–15.0)	2.5 (1.0-4.0)	90 (65.0–140.0)	8 (6.0–16.0)	10 (1-80)
Baseline in 2010			5.2	12.6	1.8	131.8	17.9	100-1000
Production (2050)	Waste (2050)	Diet (2050)						
BAU	Full waste	BAU	9.8	21.1	3.0	199.5	27.5	1,043
BAU	Full waste	Dietary shift	5.0	21.1	3.0	191.4	25.5	1,270
BAU	Halve waste	BAU	9.2	18.2	2.6	171.0	23.2	684
BAU	Halve waste	Dietary shift	4.5	18.1	2.6	162.6	21.2	885
PROD	Full waste	BAU	8.9	14.8	2.2	187.3	25.5	206
PROD	Full waste	Dietary shift	4.5	14.8	2.2	179.5	24.1	351
PROD	Halve waste	BAU	8.3	12.7	1.9	160.1	21.5	50
PROD	Halve waste	Dietary shift	4.1	12.7	1.9	151.7	20.0	102
PROD+	Full waste	BAU	8.7	13.1	2.2	147.6	16.5	37
PROD+	Full waste	Dietary shift	4.4	12.8	2.1	140.8	15.4	34
PROD+	Halve waste	BAU	8.1	11.3	1.9	128.2	14.2	21
PROD+	Halve waste	Dietary shift	4.0	11.0	1.9	121.3	13.1	19

not only about diets — increases in **productivity** + **waste reduction** essential for achieving targets

'90% of the \$4.3 trillion annual costs of healthcare in the US is due to noncommunicable diseases for which diet is a key risk factor' Volpp et al. 2023 Circulation

Willett et al. 2019

Eat-Lancet 2.0

- Broader
- Includes socio-economics and justice elements explicitly: jobs, wages, affordability of diets
- Diets and planetary boundaries revised
- Multi-model ensembles
- Case studies (circularity, trade, mitigation, micronutrients and others)

Preliminary multi-model ensemble environmental results for agriculture, 2050 Percentage change for scenarios vs BAU 2050

Sundiang et al. in prep

CORNELICALS College of Agriculture and Life Sciences

Preliminary multi-model ensemble results

Percentage change for EL2 2050 vs Business-as-usual (BAU) 2050: Food sectors, global

Е

Α

AgMM

CORNELICALS College of Agriculture and Life Sciences

Preliminary multi-model ensemble results

Calorie availability per capita in 2050 under different scenarios

Gibson et al. in prep

EL2 2050 vs BAU 2050: Global results

Cornelicals College of Agriculture and Life Sciences

E

ΑΤ

Ag¥M

Plant-based alternatives and fermentation products dominate the alt prot market

UNEP 2023

Breakdown of venture investments by company's country, technology type and type of product

Source: FAIRR Initiative 2022. Note: The data refers to deals for the period 2020-2021.

Figure 3.4 Global alternatives to conventional meat industry forecasts by year

UNEP 2023, adapted from GFI 2023

16-20 OCTOBER 2023

SCIENCE AND INNOVATION FOR CLIMATE ACTION

A-ASF through the lens of... NUTRITION

Ultraprocessed

Minimally processed

Beef vs Plant Alternatives: Nutritionally Interchangeable?

Ground Beef

The % Daily Value (DV) tells you how much a nutrient in a serving of food contributes to a daily diet. 2,000 calories a day is used for general nutrition advice.

oulolleo	
	% Daily Value*
Total Fat 14g	18%
Saturated Fat 8g	40%
Trans Fat 0g	
Cholesterol 0mg	0%
Sodium 370mg	16%
Total Carbohydrate 9g	3%
Dietary Fiber 3g	11%
Total Sugars 0g	
Includes 0g Added Sugars	0%
Protein 19g	38%
Vitamin D 0mcg	0%
Calcium 180mg	15%
Iron 4.2mg	25%
Potassium 610mg	15%
Thiamin 28.2mg	2350%
Riboflavin 0.4mg	30%
Niacin 4.8mg	30%
Vitamin B6 0.4mg	25%
Folate 115mcg	30%
Folate 115mcg Vitamin B12 3mcg	30% 120%
Folate 115mcg Vitamin B12 3mcg Phosphorus 180mg	30% 120% 15%

The % Daily Value (DV) tells you how much a nutrient in a serving of food contributes to a daily diet. 2,000 calories a day is used for general nutrition advice.

similar **Nutrition Facts** panels, but **90% difference** in metabolite abundances

16-20 OCTOBER 2023

SCIENCE AND INNOVATION FOR CLIMATE ACTION

A-ASF through the lens of... ENVIRONMENTAL IMPACT

Source: Santo et al. (2020)

Source: Reijnders & Soret (2003)

16-20 OCTOBER 2023

SCIENCE AND INNOVATION FOR CLIMATE ACTION

A-ASF through the lens of... LIVELIHOODS

Current livestock sector supports the livelihoods of **1.1B low-income people** (70% of whom are

women)

Adoption of A-ASF can **adversely impact** livelihoods but also offers **new opportunities**. Seizing them depends on:

SCIENCE AND INNOVATION FOR CLIMATE ACTION

A-ASF through the lens of... AFFORDABILITY

Affordability may look very different when considered on a '**per nutrient**' basis, as opposed to '**per serving/unit weight**' basis

Affordability of A-ASF depends on what you compare:

'Modern' A-ASF like **processed burgers** are disproportionately consumed by richer consumers, with high relative prices being a barrier to consumption

...yet **legumes**, for example, are highly affordable—less than USD 0.50 per serving

Adoption of A-ASF | Some modelling results

SOURCE	LAND USE	BLUEWATER USE	FERTILIZER USE	GHG EMISSIONS
(Eshel et al. 2018)	Reallocates 32 million ha (25% cropland) from feed production for beef	 10% if replaced by buckwheat 80% if replaced by tofu 	 10% if replaced by snap bean 60% if replaced by soybeans 	 5% if replaced by pork 90% if replaced by legumes
(White and Hall 2017)	NA	NA	NA	 With food imports: -33% reduction No food imports: -31% reduction
(Goldstein et al. 2017)	 Vegetarian: -70% reduction Vegan: -79% reduction 10% Shift: -2% reduction 25% shift: -6% reduction 50% shift: -12% reduction 	 Vegetarian: -70% reduction Vegan: -75% reduction 10% Shift: -2% reduction 25% shift: -5% reduction 50% shift: -10% reduction 	NA	 Vegetarian: -32% Vegan: -67% 10% Shift: -1% (9 Mt CO2eq) 25% shift: -3% (23 Mt CO2eq) 50% shift: -6% (45 Mt CO2eq)
(Harwatt et al. 2017)	42% sparing of cropland for other uses (70 million ha)	NA	NA	206-209 Mt CO2eq reduction
Mason-D'Croz et al. 2022	Reallocated from Beef TAX*: 6% to 18% Pref ² : 6% to 10% ALTP*: 6% to 38%	 TAX*: < ±1% Pref: <±1% ALTP*: +1% to +7% 	 TAX*: < ±1% Pref: < ±1% ALTP*: +1% to +7% 	 TAX*: -3% to -8% (9-27 Mt CO2eq) Pref: -2% to -4% (9-14 Mt CO2eq) ALTP*: -2% to -14% (8-47 Mt CO2eq)

alt-protein sources **can reduce 8% of GHG** from crop production

Source: Pikaar et al. 2017 Env Sci Tech

Cornell CALS

College of Agriculture and Life Sciences

THANK YOU

mario.herrero@cornell.edu

115 Bruckner Hall, Cornell University, Ithaca, NY

cals.cornell.edu/food-systems-global-change

